Jﬁormance
calablllty

‘. ~

—— Dr Heinz M. Kabutz

,Javaggeglal ts.eu
java Training
© 2012 Heinz Kabutz - All Rights Reserved

http://codemotion.es/talks#t998
http://codemotion.es/talks#t998
http://codemotion.es/talks#t998
http://codemotion.es/talks#t998
http://codemotion.es/talks#t998
http://codemotion.es/talks#t998

Multi-threaded Performance and Scalability

Dr Heinz Kabutz

® Brief Biography
— From Cape Town, now lives on an island in Greece
— PhD Computer Science from University of Cape Town
— The Java Specialists' Newsletter
— Java programmer

— Java Champion since 2005

Jovosp“qclallsts .eu

«
= Java

Champions

s AL <
‘e .s.,w.n.-. :

ARSI N LR A A
LR AR S & TR

\."

HT: Poa: TR € i RN S i O X TRt O AT T e ok
RORBRNGAN 5 0 SURIDRNRY 61607+ VTR CUiRnP ¢ o 0 IR GRARE AR OR TR B YL i T] R
.-',Mﬂ«'%*@ B s e A1 fuaet T T e e]
R TEE TeANKE R SRR RRRE R C T _ S : eammmmhw%:nv e HJ
TS SAH) 35 &R SgaReE LYy CLEREL ,J;- ‘ gat i ’&ll
.--le $~'fffi." S 1R A A : 335!'5'.' lTE‘ﬁb 4 A 3 IJI
ln!!ﬂ
'&:L

UL RS ARER ST ARENTL ivfshﬁﬂﬂﬁﬂiliﬂllllll
(R NRANEGRREARELNY § §’>33
..... -A?j :':f ;;“ ; o .‘ [Lt n!;>!\l : . | f; : '!g"

'\l

.o e .
\er\% ~ 'é it

e
i‘m e

- ‘\V . ‘. : S J'

. -
J ..*‘h:“' WK S AT ,“._.r,_.
.5 > . i Y . Y L) -
\ Yl) ". 2 l” ‘.‘ ‘N _‘1\"»’,.“.'.‘(0
IR \ - TN '. \
TR PRGN
e g %ﬁ,’a"* AN ‘\' e, AN R «
LD 5 A g X
\Q't. ,:\ P e ,..’) : 3 :
S S T IRRET S AN A
. ot LN Y
4 ; :

S LSRR NG
;?%f"%fi%w‘"
;-‘_;4‘, ' A
o iy SR
-cﬂ&*%!‘#ﬁﬁr'ug“

\ S %) v

-a)

"\... A t.,\ " ;4 "" \.‘*’.“‘: \
A1) ql:",\ "-: Y RN 5
SR 3, A+
?%JWI

4 B

Jovosp"qclollsts.ou

Multi-threaded Performance and Scalability

Threads Help Utilize Our Hardware

® Do something else whilst waiting for IO

— e.g. blocking IO, progress bars, etc.

® Split a problem into smaller chunks and solve together

— e.g. fork/join

Multi-threaded Performance and Scalability

Let's Go Fast Fast Fast

® In 2000, Intel predicted 10GHz chips on desktop by 2011
— http:/Iwww.zdnet.com/news/taking-chips-to-10ghz-and-beyond/96055

S'ummary Imagine if your home PC had as much giga-happy grunt as a
mainframe. A desktop that's 100 times more powerful than a

Want a PC that's 100 1,000MHz PC, operates as your personal server, networks all your

times more powerful than electronic appliances and responds to your voice commands.

11,000MHz desktop? Sound like Star Trek? Maybe, but to high-tech's leading microprocessor

Then meet the army of gurus it sounds more like 2011.

microprocessor engineers

hell bent on multiplying According to a cross section of industry experts polled by ZDNet News,

speed and performance. 2011 is the year to mark on your PDA because that's when chips are
nredicted to hit the 10GHz barrier, That giaa-c~:=* 2 222 o~uvivalant Af

R e e ——

o
5
o
E
S
S

Multi-threaded Performance and Scalability

Let's Go Fast Fast Fast

® Core i7 990x hit the market early 2011
— 3.46GHz clock stretching up to 3.73 GHz in turbo mode

— 6 processing cores

— Running in parallel, we get 22GHz of processing power!

Jovasp.\clollm.ou

Multi-threaded Performance and Scalability

Let's Go Fast Fast Fast

® Japanese 'K' Computer June 2011

— 8.2 petaFLOPS

* 8 200 000 000 000 000 floating point
operations per second

e Intel 8087 was 30 000 FLOPS, 273 billion
times slower

— 548,352 cores from 68,544 2GHz 8-Core
SPARCG4 Vllifx processors

SPARCE4™ WIIIfx

cialists.eu

Javasg

Multi-threaded Performance and Scalability

Which Is Faster, "K" Or One Simple Intel "i7"

® Intel i7 has a total speed of 3.73GHz x 6 = 22 GHz
® K has a total speed of 2GHz x 548352 = 1096704 GHz

® Which is faster?

— If we can parallelize our algorithm, then K is 50,000 times faster

— But if it has to run in serial, then one Intel i7 is almost twice as fast

Thinking About Performance

® We want to utilize all our CPUs with application code

— Overly coarse-grained locking means the CPUs are starved for work
 Took 51 seconds to complete

— Too fine-grained locking means we are busy with system code
 Took 745 seconds to complete

Yr - " D™ -.']
"‘. wa_ P \ l‘
¥y
,))|
+ o " ’

B Thinking About Performance

® Busy CPUs by using local data and merging results

— Took 28 seconds to complete

cialists.eu

Javasg

Multi-threaded Performance and Scalability

Performance Vs Scalability

® We can measure application performance in many ways

— Latency: How fast one unit of work runs

— Throughput: How many units of work can be done per unit of time

® A system is scalable when the throughput increases with
more computing resources such as CPUs or faster 10

Multi-threaded Performance and Scalability

How Fast Vs How Much

® In traditional performance optimizations, we try to make
our code run faster

— e.g. cache old results, improve complexity of algorithm

Jovosp“qclallsts .eu

Multi-threaded Performance and Scalability

How Fast Vs How Much

~ | ® When we tune for scalability, we want to parallelize work

— Thus by adding more CPUs, we can complete more work

Javaspecialists.eu

Jovosp“qclallsts .eu

Multi-threaded Performance and Scalability

How Fast Vs How Much

® Many code tricks that make code run faster also make it
less scalable

— For example, maintaining previous results adds synchronization

Multi-threaded Performance and Scalability

2-Tier Vs Multi-tier System

~ | ® Old 2-tier systems

— Rich client connected to database
— Typically low latency

— Only two layers

— Not scalable to millions of users

Javaspecialists.eu

Multi-threaded Performance and Scalability

2-Tier Vs Multi-tier System

® Multi-tier systems can scale

— Overall latency might be worse than with 2-tier
— But throughput is much better

— Can scale to millions of users

Jovosp"qclallsts.ou

Multi-threaded Performance and Scalability

2-Tier Vs Multi-tier System

- | ® Every system you build should also work In a cluster

— Don't leave "clustering"” as an optional extra for the end

Javaspecialists.eu

Jovosp“qcloll:ts.ou

Multi-threaded Performance and Scalability

Evaluating Performance Tradeoffs

® Always find out the performance requirements
— Are the requirements low latency?
 What is the maximum wait time for your clients?
— Or high throughput?
« How many clients do you want to support at the same time?

22

le's Laws

' .
| '. - ! '
- N - X

. and Scalability

.Javqgggglg%tg.eu

http://codemotion.es/talks#t998
http://codemotion.es/talks#t998

Jovosp“qclallsts .eu

Multi-threaded Performance and Scalability

Amdahl's Law

® Some problems can be solved faster by parallelizing
portions of it

— N = number of cores

— F = serial portion

Speedup <

(-F)

F
"N

Multi-threaded Performance and Scalability

\Watermelons

® More workers (N) can plant watermelons faster and
harvest them faster

® But no amount of additional workers can make them grow
any faster (F)

— The growing is our serial section

Jovosp‘b\clonm.ou

Multi-threaded Performance and Scalability

Utilization According To Amdahl

~ | ® Even with a small section needing to run in serial, we are
limited to how we can speed up our program

3 Maximum Utilization For Various Serialization Percentages
.3 100%
[o
] \ — 0.25%
§ © — 1%
5 40%
- — 10%
— 30%
20%
0%

1 10 20 30 40 50 60 70 80 90 100
Number of Cores

Multi-threaded Performance and Scalability

Problems With Using Amdahl's Law In Practice

® You cannot accurately predict serial portion (F)

— At best we can explain why the system is slow

® Amdahl's law does not set an upper limit on processors

— The most powerful supercomputer "K" has 500,000 cores

cialists.eu

® It assumes the amount of data remains the same

— Usually data grows as utilization does

Javasg

Multi-threaded Performance and Scalability

Little's Law

® A better law for modeling real systems is Little's Law

— The long-term average number of customers in a stable system L is
equal to the long-term average effective arrival rate, A, multiplied by
the average time a customer spends in the system, W

e L=AW

— Throughput is the inverse of service time

cialists.eu

Javasg

cialists.eu

Javasg

Multi-threaded Performance and Scalability

Little's Law

® If your service time is 1ms and you have one server, then
the maximum throughput is 1000 transactions per second

— To increase throughput, add more servers or decrease service time

® Good paper showing how the law can be used in practice

— http://ie.technion.ac.il/serveng/Lectures/Little.pdf

cialists.eu

Javasg

Multi-threaded Performance and Scalability

Practical Examples Of Little's Law M

® In a store, the limiting factor is usually the cashiers

— Years ago, Aldi in Germany increased the speed of the cashiers by
making them memorize all the article codes

— They increased throughput by speeding up their cashiers

— They also limited the number of different types of articles

alists.eu

Javasg

Multi-threaded Performance and Scalability

Threading And Little's Law

® A synchronized section only lets one thread in at a time
- A=L/W
— L is 1, since the code is synchronized

— W is however long it takes to acquire the lock, call the critical
section, release the lock again

— If W is 20ms, our maximum throughput is 1/0.02 = 50 per second

® |t does not matter how many CPUs are in the system, we
are restricted by Little!

31

, and Scalability

.Javqgggglg%tg.eu

http://codemotion.es/talks#t998
http://codemotion.es/talks#t998

Jovosp‘b\clonm.ou

Multi-threaded Performance and Scalability

Costs Introduced By Threads

® Single-threaded programs do not have to synchronize,
context switch or use locks to protect data

® Threads can offer performance improvements, but there is
a cost

Jovosp‘b\clonm.ou

Multi-threaded Performance and Scalability

Context Switching

® When we have more runnable threads than CPUs, the
operating system will need to do a context switch

— The thread is swapped out, together with call stack and related data

— Another thread is swapped in

MY T A S R s t : o op B
: .l\s__..) m‘ "‘A.;X.) A\ ? A ¢

: ¥ l) d \
e, N 'S?W‘ L

_) | y
N s
ad il
S

b
L2 ‘n" v

S Context Switching Costs Thousands Of Cycles

® On Mac OS X it took on average of 3400 clock cycles

— Thousands sounds like a lot, but it was only 0.001% of performance!

— We should not let the context switch happen unnaturally often

® Cost does not only come from the actual context switch,
but also the related events
— The cache might need to be filled with new data

— Locking and unlocking might be causing the context switch

Multi-threaded Performance and Scalability

Memory Synchronization

® Java uses memory barriers to ensure that fields are
flushed and caches invalidated
— We use volatile and synchronized to place memory barriers

— Memory barriers slow us down

— They also limit how our code can be optimized

Jovosp‘b\clonm.ou

Multi-threadec

Deaf Piano Tuning Association

® Tuning involves measurement

— There is a blind piano tuning association
‘ But no deaf piano tuning association

\
. :

0111 T WS

Multi-threaded Performance and Scalability

Uncontended Locks Optimized

® Uncontended locks can be optimized away by HotSpot

— Escape Analysis sees that object never escapes from code block
 The object can then be constructed on the stack or in the registers

* Locking can be removed automatically

Jovosp‘b\clonm.ou

38

rry About
ntended Locks

.Jovqgggglalllsts eu

http://codemotion.es/talks#t998
http://codemotion.es/talks#t998

cialists.eu

Javasg

Multi-threaded Performance and Scalability

Spinning Before Actual Blocking

® CPU spinning for a bit before actual locking

— -XX:+UseSpinning turns on spinning (default off)

— -XX:PreBlockSpin=20 spin count for maximum spin iterations before
entering operating system thread synchronization code (default 10)

® Remember to measure and check that this is helping

40

| ph. L ;
: - N
v ’ . v
o £ i
: -‘ - -
T R
. N .]
& = ¥ ' a
—E—B L B =

-

!

v

. and Scalability

.Javqgggglg%tg.eu

http://codemotion.es/talks#t998
http://codemotion.es/talks#t998

Multi-threadec

Reducing Lock Contention

® The biggest threat to scalability is the exclusive lock

— Amdahl's Law shows that even a small section of serial code will
‘ limit the amount of speedup we can achieve

— And with Little's Law L=AW, the serial section always has L=1
* Thus A=1/W

’

® Our aim would need to be to reduce contended locks

g — But of course ensuring that the code is still safe

Safety First .4 measure!
Safety First

Multi-threaded Performance and Scalability

How To Reduce Lock Contention

® We have three main ways to reduce contention

— Reduce the duration that locks are held
— Reduce frequency with which locks are requested

— Replace exclusive locks with non-locking thread-safe mechanisms

Jovosp“qcloll:ts.ou

Multi-threaded Performance and Scalability

Narrowing Lock Scope ("Get In, Get Out")

® We should always hold locks for as short as possible

— Our performance is limited by how long we hold the locks
* If the lock is held for 2 ms, throughput is maximum of 500 tx/s
e If it is held for only 1ms, throughput can increase to 1000 tx/s

Jovosp‘b\clonm.ou

alists.eu

Javasg

Multi-threaded Performance and Scalability

AttributeStore With A Long Critical Section

® We are locking the entire matching method, even the
regular expression pattern matching

@ThreadSafe
public class AttributeStore {
@GuardedBy("this")
private final Map<String, String> attributes =
new HashMap<>();
public synchronized boolean userlLocationMatches(
String name, String regexp) f{

String key = "users." + name + ".location";
String location = attributes.get(key);
if (location == null)
return false;
else

return Pattern.matches(regexp, location);

Multi-threaded Performance and Scalability

A Better Way To Write "userLocationMatches”

® Faster is to lock only the portion that is necessary

— In addition, we are encapsulating the lock by using a private field

- public boolean userLocationMatches(
< String name, String regexp) f{
g String key = "users." + name + ".location";
o String location;
7 synchronized (attributes) {
- location = attributes.get(key);
o }
§ if (location == null)

return false;

else

return Pattern.matches(regexp, location);

Multi-threaded Performance and Scalability

Or Use A ConcurrentHashMap

® The ConcurrentHashMap is non-blocking on reads
— The serial section Is reduced to just a memory barrier via volatile

@ThreadSafe
public class EvenBetterAttributeStore {

@GuardedBy("'this")
private final Map<String, String> attributes =
new ConcurrentHashMap<>();

alists.eu

public boolean userlLocationMatches/(
String name, String regexp) {

Javasg

String key = "users." + name + ".location";
String location = attributes.get(key);
if (location == null)
return false;
else

return Pattern.matches(regexp, location);

Multi-threaded Performance and Scalability

AttributeStore Performance Comparisons

® Throughput for a million lookups on an 8-core machine

] Normal
[] Better
B EvenBetter

Jovosp“qclallsts .eu

Number of Threads

""'.o“

Javasg

Multi-threaded Performance and Scalability

Reducing Lock Granularity

® We can use /lock splitting or lock striping to reduce
contention

® Imagine if there was one lock for the entire application

— Completely unrelated parts of the program would be run in serial

® If a class has unrelated fields, we can use separate locks

® In ServerStatus (next slide) we could use two locks to
allow updating of users and queries at the same time

ialists.eu

Javasg

Multi-threaded Performance and Scalability

ServerStatus Uses A Single Lock

@ThreadSafe
public class ServerStatus {

}

@GuardedBy ('"'this")
private final Set<String> users
@GuardedBy (''thi1s")
private final Set<String> queries = new TreeSet<>();

nhew TreeSet<>();

public synchronized void addUser(String user) {
users.add(user);

}

public synchronized void addQuery(String query) {
queries.add(query);

}

public synchronized void removeUser(String user) {
users.remove(user);

}

public synchronized void removeQuery(String query) {
gqueries.remove(query) ;

¥

Multi-threaded Performance and Scalability

ServerStatus Using Two Locks To Split Locking

@ThreadSafe

public class ServerStatus {
@GuardedBy("users"")
private final Set<String> users
@GuardedBy(''queries’)
private final Set<String> queries = new TreeSet<>();

nhew TreeSet<>();

alists.eu

public void addUser(String user) {
synchronized(users) { users.add(user); }

¥

public void addQuery(String query) {
synchronized(queries) { queries.add(query); }

¥

public void removeUser(String user) {
synchronized(users) { users.remove(user); }

¥

public void removeQuery(String query) {
synchronized(queries) { queries.remove(query); }

¥
)

Javasg

""'.o“

Javasg

Multi-threaded Performance and Scalability

CopyOnWriteArraySet Can Help To Avoid Locking

® We might also @ThreadsSafe

be able to use
a thread-safe
collection like
CopyOnWrite
if the queries
exceed the
modifications

public class ServerStatus {
private final Set<String> users
new CopyOnWriteArraySet<>(Q);
private final Set<String> queries
new CopyOnWriteArraySet<>();

public void addUser(String user) {
users.add(user);

public void addQuery(String query) {
queries.add(query);

public void removeUser(String user) {
users.remove(user) ;

public void removeQuery(String query)
gqueries.remove(query);

Multi-threaded Performance and Scalability

Lock Striping

® We can decrease the probability of contention by splitting
our data structures into many pieces

3, ® ConcurrentHashMap contains an array of sub-maps

_ — The concurrency level constructor parameter specifies how many
z segments we want to have inside the map

* Should be the number of threads that need concurrent access
e Concurrency level increases memory usage. For an empty map:

Concurrency Level | Bytes
2 480

16 (default) 2272

256 34912

— Note that ConcurrentHashMap in Java 8 will probably work with a

tree structure of segments

Multi-threaded Performance and Scalability

Avoiding Hot Fields

® Even a small portion of serial code will stop scalability

® For example, ConcurrentLinkedQueue does not maintain
the number of elements inside

— Doing so would introduce a "hot" field

o] mo.u

— We would not be able to add and remove elements at the same time
— Instead, every time we ask for size() it counts the elements

5 — It is optimized for the most common cases: add() and remove()

Multi-threaded Performance and Scalability

ConcurrentLinkedQueue With Hot Field

® Our HotConcurrentLinkedQueue introduces a hot field

that caches the number of elements

public class HotConcurrentLinkedQueue<E>
extends ConcurrentLinkedQueue<E> {
private final AtomicInteger elements = new AtomicInteger();
public boolean offer(E e) {
boolean success = super.offer(e);
1f (success) elements.incrementAndGet();
return success;
}
public E poll () {
E e = super.poll();
1if (e !'= null) elements.decrementAndGet();
return e;
¥
public int si1ze() {
return elements.get();

¥
}

alists.eu

Javasg

Multi-threaded Performance and Scalability

Performance Of ConcurrentLinkedQueues

- | ® Throughput of the two queues on an 8-core system

— Note that throughput is terrible for multi-core access, but the queue
with the hot field is consistently worse

7] ConcurrentLinkedQueue
[] HotConcurrentLinkedQueue

Javaspecialists.eu

Number of Threads

Multl-threadgd Pol_'_formance and Scalability

Alternatives To Exclusive Locks

® We can use more scalable alternatives to exclusive locks

— ReadWritelLock allows several threads to read at the same time but
z only for one to write

é — Some of the concurrent collections allow better scalability
* They typically use a combination of volatile and compare-and-set

— Immutable objects reduce the need for locking

o — Atomic fields provide volatile access and compare-and-set

® Contended fields based on compare-and-set can have
worse performance due to too many retries

Multi-threaded Performance and Scalability

Unix "vmstat”

® Busy system

procs ----—-----—-- memory-------—-—- -swap- --io-- --system-- ---—- cpu----
r b swpd free buff cache si1i so bi bo 1in cs us sy 1id wa
3 0 0 2666092 223300 4388744 0 0O O 68 1506 56459 24 2 74 O
z 3 0 0 2644168 223300 4388744 0 O O 8 1298 61687 31 2 68 O
ié 3 0 0 2643668 223300 4388744 0 0 O 0 1296 60977 25 173 O
¢ 4 0 0 2644064 223300 4388744 0 0 O 12 1311 59997 27 271 O
: 2 0 0 2643660 223300 4388748 0 0 O 8 1423 68424 25 2 73 O
4 0 0 2643876 223300 4388748 0 O O O 1555 65415 26 2 72 O
3 0 0 2620896 223308 4388748 0 0 0 132 1349 56320 31 2 67 O
g ® Quiet system
procs —--—---————--—- memory-------——-— -swap- --io-- --system-—- ---—- cpu---—-
r b swpd free buff cache si so bi bo 1in cs us sy 1id wa
0 O 0 2661188 223524 4388964 0 O O 0 228 212 0O 0 100 O
0 O 0 2660800 223524 4388968 0 O O O 135 141 O 0 100 O
0 O 0 2660676 223524 4388968 0 O O O 83 8 0 0 100 O
0 O 0 2660676 223524 4388968 0 O O O 103 919 0 0 100 O
0 O 0 2660676 223524 4388968 0 O O O 170 157 O O 100 O
0 O 0 2660676 223524 4388968 0 O O O 111 112 O O 100 O

Multi-threaded Performance and Scalability

Unix "vmstat”

® The context switching (systeml/cs) is very large, telling us
that threads are not using their time quantum

~#] procs --------—-—-- memory—------—-—- -swap- --io-- --system-- ---- cpu----
_I[r] b swpd free buff cache si so bi bo 1in cs|us sy 1id wa
g 31 0 0 2666092 223300 4388744 0 0 O 68 1506 (56459(24 2 74 O
- 310 0 2644168 223300 4388744 0 0O 0 8 1298 (61687(31 2 68 O
. 310 0 2643668 223300 4388744 0 O 0 0 1296 (60977(25 1 73 O

41 0 0 2644064 223300 4388744 0 O 0 12 1311(59997(27 2 71 O
: 210 0 2643660 223300 4388748 0 0 0 8 1423 (6842425 2 73 O

41 0 0 2643876 223300 4388748 0 O O O 1555(65415(26 2 72 O
g 3 0 0 2620896 223308 4388748 0 0 0 132 1349 (5632031 2 67 O

alists.eu
.

Javasg

Multi-threaded Performance and Scalability

Why Might The CPUs Not Be Fully Loaded?

® There are several reasons the CPUs might not get hot

— Insufficient load
 The test data set might be too small
e Our test script might not be adequately loading the system
e Our test environment might not be powerful enough

— 1/0 bound
e If the application is disk-bound you will see a lot of disk io
e Windows: perfmon or taskmgr (with the correct columns selected)
e Unix: iostat or vmstat

— Externally bound
 We might be waiting for the database or a web service
 Use a sampling profiler to see what our threads are waiting for

— Lock contention - more next slide

Multi-threaded Performance and Scalability

How To Find "Hot Locks"

® Profiling

— A profiling tool like YourKit shows the most contended locks

g ® Thread dumps

- — A cheap way of finding "hot locks" is to take several thread dumps

— A heavily contended lock will usually show up several times

"pool-9-thread-2" prio=10 runnable
java.lang.Thread.State: RUNNABLE
at SynchronizedOuter.someMethod
- locked <0x00000007555c3de8>
at SynchronizedInnerOuterTest$2.callMethod
at SynchronizedInnerOuterTest$2.run

Javasg

"pool-9-thread-1" prio=10 waiting for monitor entry
java.lang.Thread.State: BLOCKED
at SynchronizedOuter.someMethod
- locked <0x00000007555c3de8>
at SynchronizedInnerOuterTest$2.callMethod
at SynchronizedInnerOuterTest$2.run

Multi-threaded Performance and Scalability

g @9 B A8E @O GO WO

Local application "AttributeStoreTest" (PID 3266) is being profiled at port 10002

| < @ Memory \JJ Garbage Collection & Monitor Usage | @ Exceptions @ Probes 5] Summary !
T .|
5 Thread name (syntax): s
£
S Group by [Monitor class '+ then group by [Waitinglblocked thread |4 | | Show blocked threads only
%]
= Name + Time (ms) Count
Monitor of class [d eu.javaspecialists.course.concurrency.chll_performance_and_scalability.AttributeStore 74,505 100% 6,171 99 %
» Monitor of class [€] java.lang.ref.Reference$Lock 1,094 1% 1 0%
» Monitor of class [€] java.lang.ref.ReferenceQueue$Lock 970 1% 1 0%
Name + Time (ms) Count

eu.javaspecialists.course.concurrency.chl1l_performance_and_scalability.AttributeStore.userLocationMa 2,239,456 100 % 6,171 100 %
v [eu.javaspecialists.course.concurrency.chll_performance_and_scalability.AttributeStoreTest.testCon
v & eu.javaspecialists.course.concurrency.chll_performance_and_scalability.AttributeStoreTest$1.ca
v [eu.javaspecialists.course.concurrency.chll_performance_and_scalability.AttributeStoreTest$]
i%, java.lang.Thread.run()

e

@ Solut... @ Connecting to profiled applications @ Monitor profiling: analyze synchronization issues @ Method back traces: find out where a

Multi-threaded Performance and Scalability

g @9 AP H48F @9 @O WO

Local application "BetterAttributeStoreTest" (PID 3708) is being profiled at port 10001
‘4 @ Memory \JJ Garbage Collection & Monitor Usage | @ Exceptions @ Probes 5] Summary |

eu.javaspecialists.course.concurrency.chl1l performance_and_scalability.BetterAttributeStore.userLoca 2,916,123 1 486,982 1
v K’ eu.javaspecialists.course.concurrency.chll_performance_and_scalability.BetterAttributeStoreTest.t
v & eu.javaspecialists.course.concurrency.chll_performance_and_scalability.BetterAttributeStoreTe:
v K eu.javaspecialists.course.concurrency.chll_performance_and_scalability.BetterAttributeStore
i%, java.lang.Thread.run()

Y]

£ :

o Thread name (syntax): ﬁ

o

= Group by | Monitor class ‘%1 then group by | Waiting/blocked thread |4 | Show blocked threads only

Name v Time (ms) Count
Monitor of class [q java.util.HashMap 96.820 100 % 486.982 99 %

» Monitor of class [€] java.lang.ref.Reference$Lock 290 0% 19 0%
» Monitor of class [€] java.lang.ref.ReferenceQueue$Lock 252 0% 1 0%

i """ aName Time (ms) Count |

@ C... @ Solution of performance problems @ Monitor profiling: analyze synchronization issues @ Method back traces: find out wherg

alists.eu
.

Javasg

HotSpot Options For Lock Performance

Multi-threaded Performance and Scalability

® We can control how HotSpot does locking

— -XX:+DoEscapeAnalysis

» Elides locks on objects that cannot escape

— =XX:+EliminateLocks

* Does lock coarsening using roach motel semantics

— -XX:+UseBiasedLocking
* Locks are assumed to be given to a single thread

—This might have to be undone if another thread needs the lock
e Additional flags control how quickly biased locking is applied

-XX:BiasedLockingStartupDelay= 4000
-XX:BiasedLockingBulkRebiasThreshold=20
-XX:BiasedLockingBulkRevokeThreshold=40
-XX:BiasedLockingDecayTime=25000

64

€’
/

er ance and Scalability

.Javqgggggrl‘lﬂg.eu

http://codemotion.es/talks#t998
http://codemotion.es/talks#t998

-

’

s
-

Multi-threaded Performance and Scalability

Conclusion

® Traditional optimizations try to speed up a single method
 Change complexity or cache previous results
— In multi-threading, this can introduce bottlenecks and "hot fields™

— Algorithms might also be more difficult to parallelize

® Measure your performance

— Only optimize contended locks

— Use good tooling to discover the hottest locks

® Narrow your lock scope ("Get in, Get out")
— Do not write 2000 line long synchronized methods

— Little and Amdahl will love you for it

® Learn how concurrency works in Java

66

Jﬂ‘ormance
calablllty

Questions?

.Jovqgggglgrl‘ ntg.eu

http://codemotion.es/talks#t998
http://codemotion.es/talks#t998
http://codemotion.es/talks#t998
http://codemotion.es/talks#t998
http://codemotion.es/talks#t998
http://codemotion.es/talks#t998

